Overexpression of Both ERG11 and ABC2 Genes Might Be Responsible for Itraconazole Resistance in Clinical Isolates of Candida krusei

نویسندگان

  • Xiaoyuan He
  • Mingfeng Zhao
  • Jinyan Chen
  • Rimao Wu
  • Jianlei Zhang
  • Rui Cui
  • Yanyu Jiang
  • Jie Chen
  • Xiaoli Cao
  • Yi Xing
  • Yuchen Zhang
  • Juanxia Meng
  • Qi Deng
  • Tao Sui
  • Oscar Zaragoza
چکیده

OBJECTIVE To study the main molecular mechanisms responsible for itraconazole resistance in clinical isolates of Candida krusei. METHODS The 14α-demethylases encoded by ERG11 gene in the 16 C.krusei clinical isolates were amplified by polymerase chain reaction (PCR), and their nucleotide sequences were determined to detect point mutations. Meanwhile, ERG11 and efflux transporters (ABC1 and ABC2) genes were determined by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) for their expression in itraconazole-resistant (R), itraconazole-susceptible dose dependent (SDD) and itraconazole-susceptible (S) C.krusei at the mRNA level. RESULTS We found 7-point mutations in ERG11 gene of all the C.krusei clinical isolates, including 6 synonymous mutations and 1 missense mutation (C44T). However, the missense mutation was found in the three groups. The mRNA levels of ERG11 gene in itraconazole-resistant isolates showed higher expression compared with itraconazole-susceptible dose dependent and itraconazole-susceptible ones (P = 0.015 and P = 0.002 respectively). ABC2 gene mRNA levels in itraconazole-resistant group was significantly higher than the other two groups, and the levels of their expression in the isolates appeared to increase with the decrease of susceptibility to itraconazole (P = 0.007 in SDD compared with S, P = 0.016 in SDD with R, and P<0.001 in S with R respectively). While ABC1 gene presented lower expression in itraconazole resistant strains. However, the mRNA levels of ERG11, ABC1 and ABC2 in a C.krusei (CK10) resistant to both itraconazole and voriconazole were expressed highest in all the itraconazole-resistant isolates. CONCLUSIONS There are ERG11 gene polymorphisms in clinical isolates of C.krusei. ERG11 gene mutations may not be involved in the development of itraconazole resistance in C.krusei. ERG11 and ABC2 overexpression might be responsible for the acquired itraconazole resistance of these clinical isolates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upregulation of the ERG11 gene in Candida krusei by azoles

BACKGROUND AND THE PURPOSE OF THE STUDY Candida species are the agents of local and systemic opportunistic infections and have become a major cause of morbidity and mortality in the last few decades. Azole resistance in Candida krusei (C. krusei) species appears to be the result of gene alterations in relation to the ergosterol biosynthesis pathway, as well as efflux pumps. The main objective o...

متن کامل

Analysis of Molecular Resistance Mechanisms of Itraconazole in Candida Albicans Clinical Isolates from India

Opportunistic fungal infections resistant to antifungal agents have been increasingly documented in recent years and their frequency will likely continue to increase. This phenomenon appears due largely to the extensive use of antifungal agents to treat fungal infections that typically occur in severely immunocompromised and/or critically ill patients. Candida species are leading fungi responsi...

متن کامل

In vivo and in vitro acquisition of resistance to voriconazole by Candida krusei.

Candida krusei is an important agent of opportunistic infections that often displays resistance to several antifungals. We describe here the in vivo acquisition of resistance to voriconazole (VRC) by C. krusei isolates recovered from a leukemia patient during a long period of VRC therapy. In order to mimic the in vivo development of VRC resistance, a susceptible C. krusei isolate was exposed da...

متن کامل

Regulation of ERG3, ERG6, and ERG11 Genes in Antifungal-Resistant isolates of Candida parapsilosis

Background: Candida parapsilosis is one of the five common strains of yeasts involved in invasive candidiasis. The expression analysis of sterol biosynthesis pathway genes, which are associated with resistance, can assist the better understanding of antifungal resistance mechanisms. Methods: The antifungal susceptibility of 120 clinical C. parapsilosis isolates was examined. The changes in the ...

متن کامل

Quantitation of ergosterol content and gene expression profile of ERG11 gene in fluconazole-resistant Candida albicans

Background and Purpose: The frequency of opportunistic fungal infections in immunocompromised patients, especially by Candida species, has sharply increased in the last few decades. The objective of this study was to analyse the ergosterol content and gene expression profiling of clinical isolates of fluconazole resistant Candida albicans. Materials and Methods: Sixty clinical samples were ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015